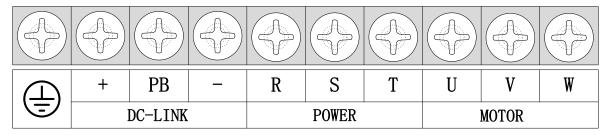
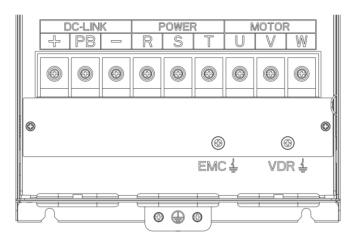
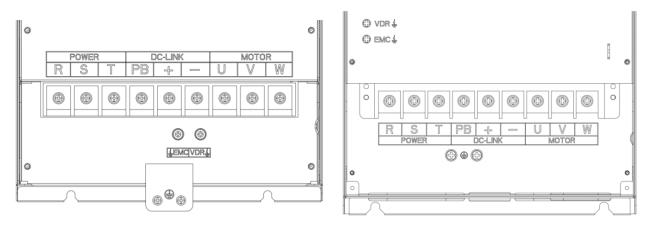


Operation manual VFD500-PV/VFD500M-PV


Solar pump Inverter


Solar pumping inverter user manual

1、VFD500-PV Electrical cable Connection

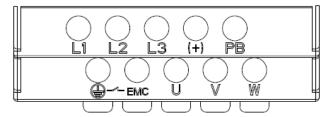

Please follow the diagram below for wiring. And pay attention to the following issues: Please follow the diagram below for wiring. And pay attention to the following issues:

1 Figure 1-1 SIZE A~SIZE C 0.75kw-15kw Main Circuit Terminal

2 Figure 1-2 SIZE D 18.5kw-22kw main circuit terminal block diagram

3 Figure 1-3 SIZE E 30-37kw

4 Figure 1-4 SIZE F~G 45-90kw


5 Table 1-5 Function description of the main circuit terminal of the inverter

Terminal	Function instruction	
R、S、T	AC power input terminal, connect three-phase AC power	
U、V、W	Inverter AC output terminal, connect three-phase AC motor	
_	The positive and negative terminals of the internal DC bus are connected to the	
+, -	external brake unit or For common DC bus	
+, PB Braking resistor connection terminal when built-in brake unit		
⊕	Ground terminal, ground	
EMC VDB	Safety capacitor and varistor grounding selection screw (SIZE A~SIZE C EMC	
EMC、VDR	screw on the left side of the fuselage)	

- > The power output of the PV panel is connected to the "+" and "-" terminals. Please note that the polarity is not reversed.
- Make sure that the inverter input AC voltage level is consistent with AC grid voltage before connecting with Input "R", "S" and "T" terminals
- ➤ If Grid is single-phase power supply, you can connect to R T or any two terminals of "R", "S" and "T".

2 VFD500M-PV Electrical cable Connection

Please follow the diagram below for wiring. And pay attention to the following issues: Please follow the diagram below for wiring. And pay attention to the following issues:

5 Table 1-6 Function description of the main circuit terminal of the inverter

Terminal	Function instruction	
L1、L2、L3	AC power input terminal, or solar DC supply terminal	
U、V、W	Inverter AC output terminal, connect three-phase AC motor	
+、PB	+ for solar positive and PB for solar negative	
⊕	Ground terminal, ground	
EMC、VDR	Safety capacitor and varistor grounding selection screw (SIZE A~SIZE C EMC	
EIVIC, VDR	screw on the left side of the fuselage)	

- > The power output of the PV panel is connected to the any two terminal of L1 L2 L3 on priority
 Or if L1 L2 L3 are connected for AC grid ,+ terminal is for solar positive and PB for solar negative.
- Make sure that the inverter input AC voltage level is consistent with AC grid voltage before connecting with Input "L1", "L2" and "L3" terminals
- ➤ If Grid is single-phase power supply, you can connect to L1 L2 or any two terminals of "L1", "L2" and "L3"。

1.1 Electrical Specifications

Table 1-1 Electrical Specifications

	Table 1. Electrical epochications				
	220V	380V			
Max input DC voltage(VOC)	450V	800V			
DC voltage range	200~450VDC	350~800VDC			
Recommended DC input voltage range (Vmpp)	250V-400V	450V-600V			
Recommended Input Operation Voltage	305V(Vmpp)	530V(Vmpp)			
MPPT efficiency	>99%				
Rated output voltage	1/3-phase 220VAC	3-phase 380-480VAC			
Output frequency range	50/60Hz				
Max efficiency of the machine	99%				
Ambient temperature range	-10 °C~50 °C, derating if the temper	ature is above 40 °C			
Cooling method	Ai	r cooling			
Protection degree	IP20/IP21				
Altitude	Below 1000m; above 1% for every additional 100m.				
Standard	CE/ROHS				

Noted: We suggest solar panel power should be 1.4-1.5 times higher than solar pump power, and solar pump inverter power should be higher level than solar pump. When solar pump distance to inverter higher than 100m, it should be equipped with Output reactor or higher level power inverter .for Solar panel, I total VOC less than Maximum DC voltage of inverter and Solar panel vmp is recommend 530V for 380V pump and 305V for 220V pump

1.2 Power degree AND Technical SPECIFICATION

Power size of VFD500-PV refers to the standard 4 poles induction motor at rated voltage.

Overload: 150% rated output current, 1 minute

Drive model	Max DC input current (A)	Rated output current (A)	Applicable water pump (kW)
VFD500M-40T00150-PV	9	3.7	1.5
VFD500M-40T00220-PV	12	5	2.2
VFD500M-40T00400-PV	16.5	9.4	4
VFD500M-40T00550-PV	23.9	13	5.5
VFD500M-40T00750-PV	30.6	17	7.5
VFD500-40T00150-PV	9	4.2	1.5
VFD500-40T00220-PV	12	5.6	2.2
VFD500-40T00400-PV	16.5	9.4	4
VFD500-40T00550-PV	23.9	13	5.5
VFD500-40T00750-PV	30.6	17	7.5
VFD50040T01100-PV	39.2	25	11
VFD500-40T01500-PV	49.0	32	15
VFD500-40T01850-PV	50	37	18.5
VFD500-40T02200-PV	60	45	22
VFD500-40T03000-PV	81	60	30
VFD500-40T03700-PV	90	75	37
VFD500-40T04500-PV	130	90	45
VFD500-40T05500-PV	150	112	55
VFD500-40T07500-PV	200	152	75
VFD500-40T09000-PV	250	176	90
VFD500-40T11000-PV	300	210	110
VFD500-40T13200-PV	360	253	132
VFD500-40T16000-PV	430	304	160
VFD500-40T18500-PV	500	360	185
VFD500-40T20000-PV	550	380	200
VFD500-40T22000-PV	620	426	220
VFD500-40T25000-PV	680	465	250
	220V single pha	ase/three phase level	
VFD500-20T00075-PV	6.7	4.5	0.75
VFD500-20T00150-PV	9.9	7	1.5
VFD500-20T00220-PV	14.1	10.6	2.2
VFD500-20T00400-PV	22.6	17	4
VFD500-20T00550-PV	30	25	5.5

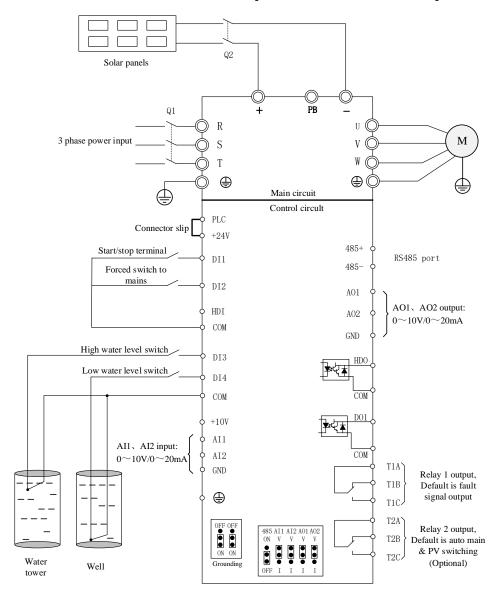
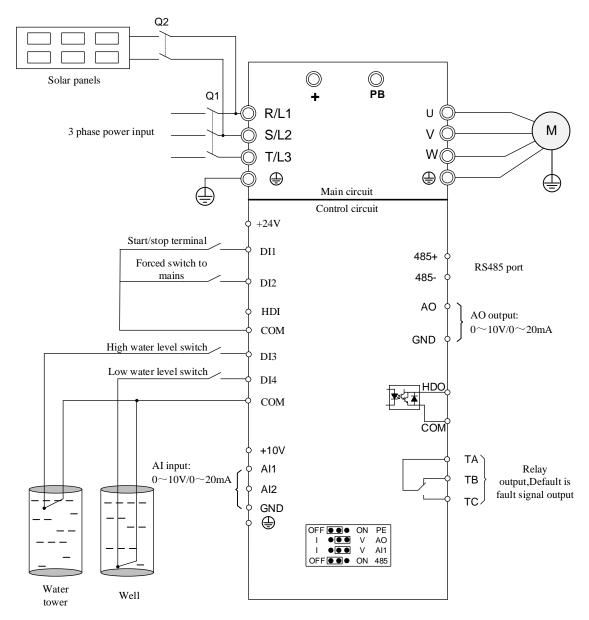

VFD500-20T00750-PV	40	32	7.5
VFD500-20T01100-PV	60	45	11
VFD500-20T01500-PV	81	60	15
VFD500-20T01850-PV	90	75	18.5
VFD500-20T02200-PV	130	90	22
VFD500-20T03000-PV	150	112	30
VFD500-20T03700-PV	200	152	37
VFD500M-20T00150-PV	9.9	7	1.5
VFD500M-20T00220-PV	14.1	10.6	2.2

Table 1-2 380V-480V rating data


Noted 1: when the output voltage is 380V, the output current will be rated value; when the output voltage is 400V, 415 V or 440V, the output current will be calculated according to power.

Noted 2: when the output voltage is 220V, the output current will be rated value

For 380V OR 220V or 110V Three phase motor Pump connection

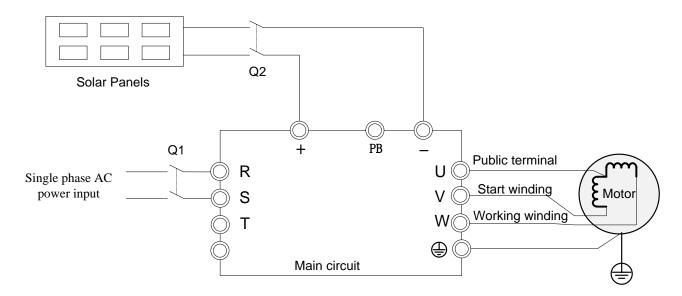
1.3 VFD500-PV Wire Diagram of solar pump inverter (three phase pump)

1.4 VFD500M-PV Wire Diagram of solar pump inverter (three phase pump)

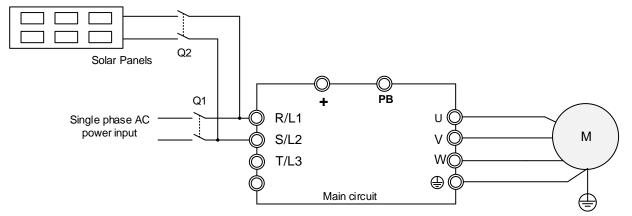
NOTE:

1:VFD500-PV Solar array output should be connected to the terminal (+DC, -DC) of the drive, please pay attention to the polarity of the solar array or you can connect solar array to R and T but VFD500M-PV Solar array output should be connected to L1 L3 OR L1 L2 OR L2 L3

- 2: For control wire, recommend using shielded cable or shielded twisted pair.
- 3: Do not suggest using the power contactor to control the RUN/STOP of the drive.
- **4:**In default carrier frequency, the maximum motor cable length is 100 meters. When the motor cable is longer than 100m, it is recommended to use output reactor.


For 220V single phase motor connection

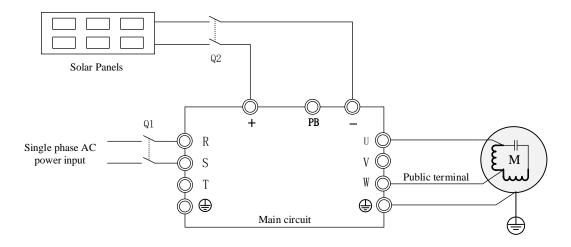
1: Single phase asynchronous motor wiring method (without starting capacitor):


Notice: U is connected to the common end of the starting winding and the working winding, V is connected to the starting winding, and W is connected to the working winding;

Single-phase asynchronous motor if the rotary steering is not correct, you can change the V and W wiring or set P22.13=1.

First solution: Set parameter P11.01=1 (Single phase motor type without capacitor) or second solution: set P00.11=00031 if your motor frequency is 50 hz or set P00.11=32 if your motor frequency is 60HZ

VFD500-PV Wire Diagram of solar pump inverter (single phase pump without capacitor)

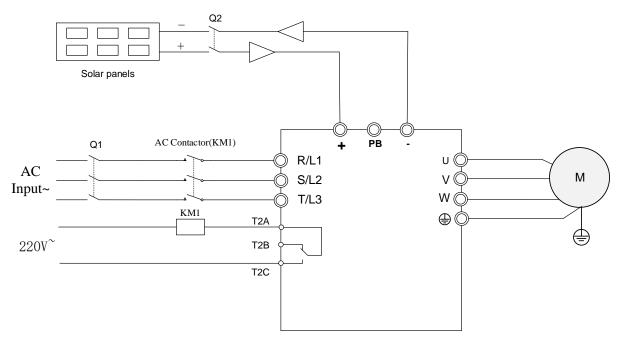


VFD500M-PV Wire Diagram of solar pump inverter (single phase pump without capacitor)

For 220V single phase motor connection

2:Single-phase asynchronous motor wiring method (with capacitor)

Notice1:First solution: Connect motor cable to power terminal U and V and enter BSC mode to Set parameter P23.15=0(output phase loss shielding protection) or second solution: set macro P00.11=00021 if your motor frequency is 50HZ or set P00.11=22 if your motor frequency is 60HZ



VFD500-PV Wire Diagram of solar pump inverter (single phase pump with capacitor)

Notes: Single phase motor has three lines, first use the universal meter to check the three lines resistor, the biggest value two lines parallel the start capacitor (recommend the capacitor volume is 150UF/250V), the other line(common-coil) connect the power terminal. Then use the universal meter to check the common coil with the other two lines resistor, the lower one connects another power terminal

Wiring method for Compensation of Grid and Solar DC supply

The back of the photovoltaic panel must be connected with anti-reverse diodes, and the photovoltaic panel will be damaged after the current is recharged

Wiring diagram of main circuit for simultaneous photovoltaic and power supply

1.4 Control Circuit Terminal

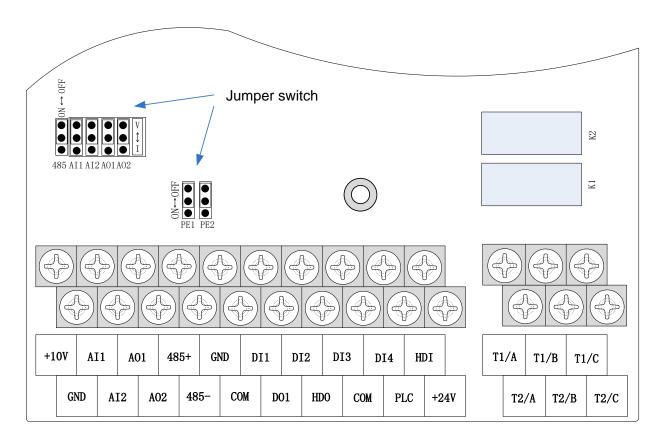


Diagram VFD500-PV control circuit terminal

Table VFD500-PV control circuit terminal instruction

Туре	Terminal	Terminal	Terminal function description	
	Symbol	Name		
			10.10V±1%	
	+10V	Input voltage	Maximum output current:10mA,it provides power	
	+100	input voitage	supply to external potentiometer with resistance range	
			of: 1KΩ~51KΩ	
	GND	Ananog	Internal isolation from COM	
	GND	ground		
			Input voltage:0~10V: Impedance 22KΩ, Maximum	
Analag innut		Analog input1	input voltage	
Analog input	Λ14		Input current:0~20mA: Impedance 500Ω, Maximum	
voltage	Al1		input current	
			Through the jumper switch AI1 0 ~ 10V and 0 ~ 20mA	
			analog input switch, the factory default voltage input.	
			Input voltage:0~10V: Impedance 22KΩ, Maximum	
		A	input voltage	
	Al2	Analog input	Input current:0~20mA: Impedance 500Ω, Maximum	
		2	input current	
			Through the jumper switch Al2 0 ~ 10V and 0 ~ 20mA	

Туре	Terminal Symbol	Terminal Name	Terminal function description		
	Symbol	INAITIC	analog input switch, the factory default voltage input.		
			Output voltage:0~10V: Impedance ≥10KΩ		
			·		
	AO1	Analog output	Output current:0~20mA: Impedance 200Ω~500Ω Through the jumper switch AO1 0 ~ 10V and 0 ~ 20mA		
	AOT	1			
			analog output switching, the factory default voltage		
Analog			output. Output voltage:0~10V: Impedance ≥10KΩ		
Analog output			·		
Output	AO2	Analog output	Output current:0~20mA: Impedance 200Ω ~500 Ω Through the jumper switch AO2 0 ~ 10V and 0 ~ 20mA		
	AUZ	2			
			analog output switching, the factory default voltage output.		
		Analog	output.		
	GND	ground	Internal isolation from COM		
			24V±10%, Internal isolation from GND		
			Maximum output current: 200mA		
	+24V	+24V current	To provide 24V power supply, generally used as a		
			digital input and output terminal power supply and		
			external sensor power		
		Digital input terminal common	The factory default setting is connected PLC with		
Switch input	PLC		+24V		
			Terminal for on-off input high and low level switch When using the external signal to drive DI1~DI5, it		
			will disconnect the connector slip of PLC with the +24V		
	COM	+24V ground	Internal isolation from GND		
	DI1~DI4		Optocoupler isolation, compatible with bipolar input		
		Digital input	Frequency range: 0~200Hz		
		terminal 1~4	Voltage range: 10V~30V		
		Open	Optocoupler isolation		
Switch	DO1	collector	Voltage range: 0V~24V		
output		output	Current range: 0mA ~50mA		
			T1A-T1B: normal close		
Relay output	TA/TB/TC	Relay output	T1A-T1C: normal open		
1			Contact rating: AC 250V, 3A; DC 30V, 1A		
Relay			T2A-T2B: normal close		
output2	T2A/T2BT2C	Relay output	T2A-T2C: normal open		
(optional)			Contact rating: AC 250V, 3A; DC 30V, 1A		
-		485 Positive			
	485+	differential			
40E		signal	Baud rate:		
485 port		485 Negative	1200/2400/4800/9600/19200/38400/57600/115200bps		
	485-	differential			
		signal			

2. Trial run(How to start solar pump inverter)

Make sure all cables connections of solar panel and pump motor correct and no need to set any parameter, if you want to set parameter, you can do as follows.

Step 1: **(Keypad control)**:Set motor parameter P11.02- P11.06 as per motor pump name plate If dry run protection is required, measure the unload protection current according to the following method. If dry run protection not required then miss this step and go to step 2.

Notice" Unload detection current self-learning:

- 1. Set P47.00=0, P00.07=20.00-30.00, P00.06=0, and then press run the drive
- 2. Check the function code P27.00, wait until its value becomes 20.00, and then enter the function code P24.13,
- 3. press the keyboard RUN and simultaneously for more than 2 seconds,, and if the value changes, the load-off self-learning is completed
- 4. Press to stop running, set P47.00=1, P00.06=1, In this process, the pump no need to take out from water

PMSM pump

If your pump is Permanent magnetic Synchronous motor pump, please set P11.00=1 and set P11.02 and P11.03 and P11.04 and P11.06 and P11.05(Set RPM first then frequency) and set P01.08 and P11.10=1 or 2 for Auto tuning

- **Step 2**: Set other related special solar pump parameters for optimization if needed.
- **Step 3**: After trial run finishing, if motor pump still not output water when inverter is running more than 40 Hz. Please disconnect the power supply and replace any two-phase wiring of the motor.

Technical Questions and solutions

1. How to achieve Automatic start after stop?

If it is controlled by keyboard no need to set any parameter. If you want to control by external switch As the default control mode is keypad control, First set P00.06=1 and use a wire or switch to connect com and DI1. When the switch is closed, the drive run, when the switch is open, the drive stop

2. How to use a float in the water tank to stop the pump if the tank is full? If your float signal is digital signal Use float switch to short DI 3 and com ,see diagram 1.3

3.Use level probe in the well for protection against dry running

1st solution: See self learning of dry run

2nd solution: do it manually Set P24.13=30%-60%(as per real empty load current percentage based on rated current) and P24.14 P24.16 and P23.21

3rd solution: If your sensor is digital switch ,just short D4 and com

4th solution:If your float signal is Analog signal, Connect Ai2 and 10V and GND and set P41.00=23 and P41.03-P41.06

4. How to set minimum frequency (for example) 30hz and maximum 50HZ

Set P47.05=30HZ and 47.06 to some time and 47.07 to some time. Please refer to details of P47.05-47.07

5.If pump is 60HZ frequency, how to set max frequency?

Notice: If your motor rated frequency is 60HZ First solution for you, P01.06=P01.08=P11.05=60HZ. Quick setting and easier way: you should set P00.11=02 If your motor is three phase; if your motor is single phase with capacitor ,set P00.11=22; If your motor is single phase without capacitor ,set P00.11=32

6. Does the product need to set a lot of parameters?

No, it doesn't. The inverter has a self-adaptive and self-learning function. It is automatic start and stop, you can press Run key to start, or you just wait for P47.03=600S(Default) then it will automatically start

7. Could it replace my previous PV pumping inverter?

Yes, of course. Selecting inverter model according to the rated voltage, current and power of the water pump. A bit more is better. Then take off the old one and put ours on, the system will work.

8. How to design solar PV water pump system?

Key point: the rated VOC and VMP and power of the PV Array need to match the input range of the inverter. If needed, we will provide technical support online.

9. How to make the water pump system work without sunshine?

Usually, solar PV water pump system can meet the needs of pumping water.

If there is no sunshine, the system will not work. But out inverter could also support AC input. So, connect the power grid or diesel power generation to the inverter, the pumping system will work. If necessary, keep switch and interface locations during the system design

10. How to check and solve basic problem of inverter trips and error

- a: Check the total vmp and voc of solar panels ,solar panel technical data
- b: Check motor pump power and rated current
- c: Check the distance between motor and inverter
- d: Check trip record r25.00 r25.01 25.02 25.03 r26.00 r26.01 r26.02 r26.03
- e: Check troubleshooting fault and find relevant solutions
- f: Check if motor insulation has been damaged or motor is blocked

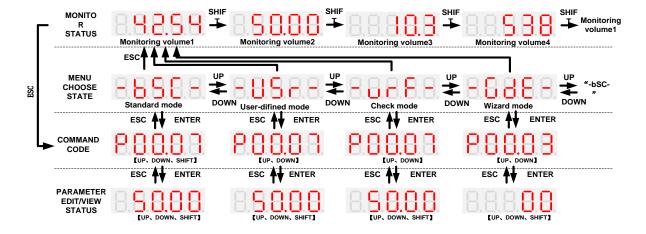
3. Keypad display

3.1 LED Instruction of operation and display

LED keyboard consists of 5 digital tubes, 7 lights, 8 keys and a potentiometer; can be used to set the parameters, status monitoring and operation control, LED keyboard shape as shown in Figure 4-1:

Figure 3-1 Operating panel

Description of indicator


Table 3-2 The name and function of each part of the keyboard

No.	Part	Name	Function
1	ESC	Exit	• exit menu level
2	ENT	Confirmation	Enter the menu interfaces level by level,
			confirm the parameter setting and save to EEPROM
3		Increment/Up	The number indicated by the cursor increases by one.
			Next function code.
			Used to switch the left and right screens while in monitor mode
4		Decrement/Down	·The number indicated by the cursor minus one.
			The previous function code.
5	M.K	Multi-function	·Perform function switchover according to the setting of
			21.02
6		Shift	Cursor shift.
	>>		Monitor Status Displays the next monitor volume.
			Switch left and right screens.
7	RUN	Run	Start the frequency inverter in the operation panel control
	HON		mode

8	STOP	Stop/Reset	 During operation, press to stop the operation (restricted by parameter 21.03). In fault status, press this key to reset the fault.
9	• Hz	Indicator light:Hz	·Indicate the digital display unit, all three lights off menas other units
10	• A	Indicator light:A	
11	•	Indicator light:V	
12	●—rpm—● Hz A	Indicator light:HZ+A(rpm/min ute)	When Hz" and "A" are lit at the same time, the unit of the currently displayed parameter is "RPM PER MINUTE
13	•-%-• ^	Indicator light: A+V(%)	When "A" and "V" are lit at the same time, the unit of the currently displayed parameter is "percent".
14	RUN	Running lights	 Off: indicates a stop condition. On: indicates inverter is running. Blinking: Deceleration stopped.
15	REV ●	Direction indicator	 Used to indicate the sign of the variable when the LED is displaying one of the variables listed in 27.02; In other cases the sign of the output frequency is indicated.
16	LO/RE	Command source indicator	 Off: The command source is the keyboard. On: The command source is terminal. Blinking: The command source is communication.
17	ALM •	Fault indicator	When it is on, the drive is faulty.

3.2 Display hierarchy and menu mode

VFD500-PV digital keyboard display is divided into four layers, from top to bottom are: monitoring status, menu mode selection status, function code selection status, parameter editing / viewing status, as shown in Figure 4-2. In the menu mode selection status, press 【UP】 or 【DOWN】 key to select menu mode, press 【ENTER】 to enter the selected menu mode, the following describes several menu modes:

3-3 Keyboard operation diagram

3.3 Monitor display(P21.00=1)

According to the running status of the inverter, the digital tube displays different contents in turn. If the button has no operation, the next monitoring amount is automatically displayed every few seconds; of course, you can also switch to the next monitoring indicator

- When the inverter is in the stop state, the digital tube is cyclically scrolling to display:
 - "00000"→DC bus voltage (r27.03) →given frequency (r27.01) →"00000"
- When the inverter is in running state, the digital tube is cyclically scrolling to display.:
 - "00000"→DC bus voltage (r27.03) →output frequency (r27.00) →output current (r27.06) →output ac output voltage (r27.05) →"00000"

3.4 Menu mode

After the solar pump inverter is power on, the keyboard menu mode is user-defined mode. Most of users only need to pay attention to the parameters displayed in this mode. To check the complete inverter parameters, press the and while the keyboard is displayed while the keyboard is displayed while the keyboard is displayed to enter the basic menu mode.

3.5 Error code: For other alarm codes, please refer to Chapter 5 of the manual.

alarm code	meaning
Sleep SLEEP	Light weak fault, please refer to function code P47.05~P47.07
A.FULL	Full water protection P47.18-47.21
A.PoL	Low power protection P47.22-47.24
A.oC R.o [Overcurrent protection P47.25-47.27
A.Lor ALor	Low water protection P47.33-47.36
Dry	Dry dun protection see P24.12-24.14

After the above warning occurs, the solar pump inverter will decelerate to stop and cannot be started again until the warning condition is not released. When the warning is released, the system will start automatically.

During the warning, the digital tube will flash the alarm code, and after 2s, it will display the other interface for 2s.

4. Solar pump special parameter User mode fast quick start

Function	Name	Description	Default	Property		
code	code 47 Group solar pumping special group					
P00.03	RESET	O: NO ACTION 11: Restore default parameter except for motor parameter and auto-tune related parameter and factory parameter 12:Restore default to factory parameter 13: Clear tripping record	0	*		
P00.06	Source of the Operation Command	 0: keypad 1: terminal 2: communication ➤ Command source: run、stop、forward、reverse、jog、fast brake stop.etc 	0	*		
P00.07	Numeric frequency setting	00.00Hz∼maximum frequency	50.00Hz	☆		
P00.11	Application Macro	00001:Output three phase 50HZ 00002:Output three phase 60hz	00000	*		

		00021:Output single phase with capacitor 50hz 00022:Output single phase with capacitor 60hz 00031:Output single phase without capacitor 50hz 00032:Output single phase without capacitor 60hz		
P01.06	Maximum frequency	10.00~600.00Hz	50.00Hz	*
P01.08	Upper limit frequency	Lower limit frequency-maximum frequency	50.00Hz	☆
P07.03	Relay 1 Output terminal function group(T1A T1B T1C)	0:No function 1:READY 2:RUN 3:Error1 (stop fault) 4:Error2 (same as Error1 except undervoltage) 5:Warning output(fault but in running)	3	☆
P11.01	AC asynchronous motor	O: Three phase AC asynchronous motor 1: Single phase AC asynchronous motor without starting capacitor	0	*
P11.02	Motor rated power	0.1kW∼710.0kW ➤ when power is less than 1kw ,0.75kw set to 0.8 as per round up principle ,0.55kw motor set 0.6 ➤ when change motor rated power,AC drive will automatically set other parameter of motor name plate and motor model parameter be careful to use	Depend	*
P11.03	Motor rated voltage	10V~2000V	Depend	*
P11.04	Motor rated current	P11.02<30kW: 0.01A P11.02>=30kW: 0.1A	Depend	*
P11.05	Motor rated frequency	1.00Hz~600.00Hz	50.00Hz	*
P11.06	Motor rated RPM	1~60000rpm	Depend	*
P21.00	Monitoring display	0: Standard mode (display frequency only)1: Automatic scrolling display (Check 3.1 in detail) it show hz,current,power and voltage	0	*
P23.15	Output phase loss function	0.0-30%, 0% means output phase detections shielded	30%	☆
r27.15	Accumulative running time	Unit:hour		•
P47.00	Solar pump Mppt function enable	0: invalid The parameters behind the 47 group cannot be changed!	1	*

		1: Enable, to enable the special mppt function of the PV pump inverter		
P47.01	Solar pump control mode	Units digit's: Startup mode 0: Manual start, the start mode is determined by P00.06; 1: automatic start, When P00.06 change, the association changes here. P00.06=0, when inverter starts and stops by keypad control, it is automatically modified to 1-automatic start P00.06=1, when inverter starts and stops by terminal control.it is automatically changed to 0-manual start Ten digit's: MPPT function 0: MPPT is disabled; CVT control is used (voltage is given as P47.04). 1: Enable MPPT. Hundred's unit automatic switching function 0: prohibited 1: enable Automatic switching is enabled, when the light is weak, it will automatically switch to the electric supply, and the MPPT function is disabled at this time.	011	*
P47.03	Automatic start timing	In auto start mode, set the time from power on to start. It is also waiting time to start	600	*
P47.04	MPPT starting voltage	Set the starting voltage of the MPPT algorithm. When the MPPT function is disabled, this value is the reference voltage.	305V(530V)	*
P47.05	Light detection threshold	If the output frequency is lower than this value and exceeds P47.06, it will be reported to Sleep and stop If automatic switching is enabled, it will switch to ac grid operation, and the MPPT function will be disabled	0Hz	☆
P47.06	Light detection time	See P47.05 for explanation.	60s	$\stackrel{\wedge}{\simeq}$
P47.07	Light weak wake up time	After the sleep fault is reported, if the time when Vdc is higher than the undervoltage point is greater than the set value, the fault	600s	☆

		state is exited and the operation continues. When the automatic switching is enabled, after switching into the electric supply operation for this time, it will try to switch into the photovoltaic operation.		
P47.08	MPPT tracking step length	The amount of change in the bus voltage during an MPPT cycle. The larger the value, the faster the maximum power point is found, but the lower the accuracy of the maximum power point.	2V	☆
P47.09	Regulator proportional gain	0.001~1.00 It is for immediate response speed, it is not recommended to change	0.05	☆
P47.10	Regulator integral gain	0.001~0.100 tracking response.it is not recommended to change	0.05	☆
P47.28	Starting coefficient	0.000~1.000	0.850	☆
P47.30	Fast speed function	Unit digit: fast starting 0: Disable	11	☆

5. Detailed Parameter list

Symbol Description:

47 Group solar pumping special group

Function code	Name	Description	Default	Property
	47	Group solar pumping special group		
P47.00	Solar pump Mppt function enable	O: invalid The parameters behind the 47 group cannot be changed! 1: Enable, to enable the special mppt function of the PV pump inverter	1	*
P47.01	Solar pump control mode	Units digit's: Startup mode 0: Manual start, the start mode is determined by P00.06; 1: automatic start, When P00.06 change, the association	011	*

[&]quot; $\stackrel{,}{\sim}$ " means that the set value of this parameter can be changed no matter the inverter is in the stop state or in running state.

[&]quot;★" indicates that the set value of this parameter cannot be changed while the inverter is running.

[&]quot;●" indicates that the value of this parameter is the actual detected record value and cannot be changed.

	changes here.	
	P00.06=0, when inverter starts and stops by	
	keypad control, it is automatically modified	
	to 1-automatic start	
	P00.06=1, when inverter starts and stops by	
	terminal control.it is automatically changed	
	to 0-manual start	
	Ten digit's: MPPT function	
	0: MPPT is disabled; CVT control is used	
	(voltage is given as P47.04).	
	1: Enable MPPT.	
	Hundred's unit automatic switching function	
	0: prohibited	
	1: enable	
	Automatic switching is enabled, when the	
	light is weak, it will automatically switch to	
	the electric supply, and the MPPT function is	
	disabled at this time.	
<u> </u>		

Remarks:

Inbuilt auto mppt software and algorithm which measure and detect every 2ms to adjust current and voltage to find the best working maximum power The input of solar energy determines the frequency corresponding to the maximum power point, because the actual pump power is positively related to the frequency. The maximum power tracking is the power of the photovoltaic panel, which provides the input power to the inverter. The power outside this point is less than the optimal working point. In other words, below this point, the frequency of the pump driven by the inverter will drop. The specific operating point is determined by the characteristics of the photovoltaic panel, not where we want to work. The high voltage is only for sufficient output under low light conditions. If you do not consider such a demand, the configuration can be freely

r47.02	Remaining time for	The remaining time of the starting is		
	starting	displayed In auto start mode,Unit: second		•
		In auto start mode, set the time from power		
P47.03	Automatic start timing	on to start.It is also waiting time to start	600	*

47.03 is waiting time to start solar pump inverter without press start button, Our solar pump inverter Is purely automatic start ,no setting software and simple and smart

Make sure solar panels cables and motor cables well connected ,it will automatically start after 600S,10 Minutes is a threshold ,if you want to test this function ,you can set P47.03=10s,so power off and power on ,it will start after 10s

		Set the starting voltage of the MPPT		
P47.04	MPPT starting voltage	algorithm.	305V(530V)	+
1 47.04	IVII I Starting Voltage	When the MPPT function is disabled, this	303 V (330 V)	^
		value is the reference voltage.		

This is Manual mppt threshold voltage ,when you want to use manual mppt mode ,first you need to set mppt function disable P47.01=00 (Unit digit 0 is means manual control ,ten'digit 0 is means CVT enables also manual mppt function ,you can check solar panel configuration and calculate VOC and VMP and set P47.04=VMP

		If the output frequency is lower than this		
	Light detection threshold	value and exceeds P47.06, it will be reported	0Hz	
P47.05		to Sleep and stop		☆
		If automatic switching is enabled, it will	0112	W
		switch to ac grid operation, and the MPPT		
		function will be disabled		

This is light detection threshold to measure solar radiation and solar power in a setting time (P47.06 Detection time), if customer do not want to keep pump running below this frequency so it can make pump sleep below this frequency, for example, if pump can not run to 20hz in a setting time, inverter will sleep and stop. if solar power is enough in detection time, then it will not report sleep alarming and return to normal

P47.06	Light detection time	See P47.05 for explanation.	60s	☆

For example :if customer want to keep pump sleep below 25HZ,so customer need to set minimum frequency to 25HZ P47.05=25HZ, if inverter can not run to 25hz in a time(it is set by P47.06),it will report "Sleep" alarming (previous software show CCC)

		After the sleep fault is reported, if the time		
		when Vdc is higher than the undervoltage		
		point is greater than the set value, the fault		
P47.07	Light weak wake up	state is exited and the operation continues.	600s	$\stackrel{\wedge}{\sim}$
P47.07	time	When the automatic switching is enabled,	0005	×
		after switching into the electric supply		
		operation for this time, it will try to switch into		
		the photovoltaic operation.		

P47.07 is wake up time to make inverter restart again. If solar power is enough ,it will detect again after 600s(default value),so inverter will automatically try to start after 600s and try to run to this frequency in set time(P47.06),if it can run to this frequency ,sleep alarm will disappear and inverter return to normal.

				The amount of change in the bus voltage		
	MPPT	tracking	step	during an MPPT cycle. The larger the value,		
P47.08		liacking	siep	the faster the maximum power point is	2V	☆
	length			found, but the lower the accuracy of the		
				maximum power point.		

P47.08 is mppt tracking step ,our solar pump inverter detect and adjust voltage and current every 2ms to search the best working maximum power to drive the pump ,we recommend the user understand this parameter and do not set and change without factory guidance ,the large in the value ,the faster the maximum power point is found ,but the accuracy of the maximum power is lower

P47.09	Regulator proportional gain	0.001~1.00	0.05	☆
P47.10	Regulator integral gain	0.001~0.100	0.05	☆
r47.11	Today's Pumping flow	0.1 m3 It shows the flow of water pumping today, it will be cleared after power off	0.0 m³	•
r47.12	Cumulative pumping	1 m3, 32 digits	0 m³	•

	flow volume	It shows the pumping flow volume		
		accumulated by the pump. The power can be saved automatically after power-on, and continue to accumulate on the original basis after re-powering. It Can be cleared to zero by P47.14.		
P47.14	Cumulative pumping reset	Set 1 to clear zero for r47.12. This function code automatically changes to 0 after the reset is completed.	0	☆
r47.15	Current water flow	0.1 m3/h	0.0 m³/h	•
P47.16	Pump rated flow	0.1 m3/h	0.0 m³/h	☆
P47.17	pump water frequency reference	This parameter is only related with r47.15.Set the output frequency of the inverter when the pump can pump water which can help to calculate water flow	20.00Hz	☆
P47.18	Full water level detection channel	Units: Water level monitoring channel 0: invalid 1:Al1 2:Al2 3:Al3 4: Al4 Note: DI terminal 60-full water detection is independent of the local setting Ten'unit: analog water level logic 0: positive logic 0.00%-empty water 100.0%-full water 1: Inverse logic 0.00%-full water 100.0%-empty water	00	*
P47.19	Full water level detection value	0.0~100.0%	0.0%	☆
P47.20	Full water level detection time	0.0∼3000.0s 1. When DI-60 is valid 2. The analog detection channel is greater than P47.19 (positive logic) or the analog detection channel is less than P47.19 (inverse logic) When 1 or 2 conditions are met and P47.20 is maintained, the system reports A.Full and shuts down	10.0s	☆
P47.21	Full water recovery time	0.0~3000.0s When the condition described in P47.20 does not meet full water level detection requirement ,it will be returned to normal	10.0s	☆

state after delay	
•	

Conditions for full water detection to take effect:

- 1. The DI terminal arbitrarily set to function No. 60 receives the input switch close signal. For example, when P06.03 is set to 60, DI3 is closed.
- 2. When the ten's digit of P47.18 is 0 and the analog input is greater than the detection value, for example: set P47.18=01, P47.19=50%, at this time Al1 input is greater than 5V or 10mA
- 3. When the tens place of P47.18 is 1 and the analog input is less than the detection value, for example: set P47.18=11, P47.19=50%, at this time Al1 input is less than 5V or 10mA
- 4. After 1, 2 or 3 conditions are met, the system will report A.FULL for the set time on P47.20 Full water recovery conditions:
- 5. The system enters the full water detection stage and displays A.FULL When conditions 1, 2 and 3 are not met, and the maintenance time is greater than the time set in P47.21, the system recovers.

uic system	riecovers.			
P47.22	Low power detection	0.0~6000.0kW	0.0kW	☆
F41.22	value	0.0-ineffective	U.UKVV	×
P47.23	Low power detection time	0~1000s During operation, when the actual output power (r16.02) is less than P47.22 and the time of P47.23 is maintained, the system reports A.Pol and stops.	10.0s	☆
P47.24	Low power recovery time	0~1000s When the condition described in P47.23 does not meet Low power protection requirement ,it will be returned to normal state after delay	10.0s	☆
P47.25	Overcurrent detection value	0.0∼999.9A	0.0A	☆
P47.26	Overcurrent detection time	0.0~3000.0s During operation, when the actual output current (r27.06) is more than P47.25 and the P47.26 time is maintained, the system reports A.Pol and stops.	10.0s	☆
P47.27	Overcurrent recovery time	0.0~3000.0s When condition described in P47.26 does not meet Over current protection requirement ,it will be returned to normal state after delay	10.0s	☆
P47.28	Starting coefficient	0.000~1.000	0.850	☆
Photo	ovoltaic panel working c	oefficient = rated mppt voltage / open circuit	t voltage	
	Characteristics of pho	tovoltaic panels for example 30.7/37.9 = 0.8	1	
P47.29	Starting adjustment	10~100V	40V	☆
P47.30	Fast speed function	Unit digit: fast starting 0: Disable 1: Enable Ten digit: Fast mppt tracking	11	☆

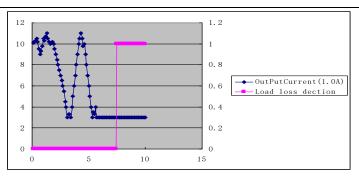
		0: Disable	1: Enable		
P47.31	Fault automatic reset	0.00~600.00		60.00s	4
F4/.31	time	0.00 - 000.00		00.008	×

Function faults include: undervoltage fault Er.Lu1, soft start fault Er.Lu2, inverter overload Er.oL, motor overload Er.oL1, inverter overheat Er.oH, motor overheat Er.oH1, motor overheat Er.oH1, user-defined fault 1 Er.Ud1, user-defined fault 2 Er.Ud2

		,		
P47.33	Low water level detection channel	Units: Water level monitoring channel 0: invalid 1:AI1 2: AI2 3: AI3 4: AI4 Note: DI terminal 61-water shortage detection is independent of the local setting Ten's unit: analog water level logic 0: positive logic 0.00%-empty water 100.0%-full water 1: Inverse logic 0.00%-full water 100.0%-empty water	00	*
P47.34	Low water level detection value	0.0~100.0%	0.0%	☆
P47.35	Low water level detection time	0.0∼3000.0s 1. When DI-61 is valid 2. The analog detection channel is less than P47.34 (positive logic) or the analog detection channel is greater than P47.34 (inverse logic) When 1 or 2 conditions are met and P47.35 is maintained, the system reports A.Lor and shuts down	10.0s	☆
P47.36	Low water recovery time	$0.0{\sim}3000.0s$ When the conditions described in P47.35 are not met, it will be restored after a delay	10.0s	☆

Conditions for the water shortage test to take effect:

- 1. The DI terminal arbitrarily set to function No. 61 receives the input switch close signal. For example, after P06.04 is set to 61, DI4 is closed.
- 2. When the ten's digit of P47.33 is 0 and the analog input is less than the detection value, for example: set P47.33=01, P47.34=50%, at this time Al1 input is less than 5V or 10mA
- 3. When the ten's digit of P47.33 is 1 and the analog input is greater than the detection value, for example: set P47.33=11, P47.34=50%, at this time Al1 input is greater than 5V or 10mA
- 4. After 1, 2 or 3 conditions are met, the system will report A.Lor for the set time of P47.35 Water shortage recovery conditions:
- 5. The system enters the water shortage detection stage and displays A.Lor


6. When the conditions 1, 2 or 3 are not met, and the maintenance time is greater than the time set in
P47.36, the system will recover.

P47.37	Reserved			
P47.38	Automatic switching delay start time	0.000s~30.000s When the automatic switching is completed, the inverter will delay this time and wait for the power supply to stabilize before running	5.000s	☆
r47.39	Input power type	0:AC Electric power 1:Solar power	-	•
	24 Group Pum	o dry run protection/unload detection param	neter	
P24.03	Lower limit frequency of self-learning	0.00Hz~600.00Hz When the operating frequency is greater than or equal to this frequency, the load-off self-learning can be performed	20.00HZ	☆
P24.12	Dry run/Unload protection option	No offload detection is performed; Enable dry run detection	1	☆
P24.13	Dry run/Unload detection level	0.0 to 200.0% The percentage of motor rated current.	0.0%	☆
P24.14	Dry run Unload detection time	0.000s~60.000s	30.000s	☆
P24.15	Unload detection offset frequency	0.00Hz∼Fmax Detection frequency=Fmax-P24.15	5.00Hz	☆
P24.16	Reset time of dry run protection	0.0~6000.0	240.0s	☆
P23.21	Dry run detection mode	0000:Coast stop 1000:Fast stop 3000:Continue to run	0000	☆

1. Set P47.00=0, P00.07=20.00-30.00, P00.06=0, and then press drive

- 2. Check the function code P27.00, wait until its value becomes 20.00, and then enter the function code P24.13,
- 3. press the keyboard RUN and simultaneously for more than 2 seconds,, and if the value changes, the load-off self-learning is completed
- 4. Press to stop running, set P47.00=1, P00.06=1, In this process, the pump no need to take out from water

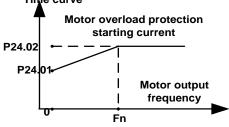
Saying P24.12 = 1, P24.13 = 40.0%, P24.14 = 3.0s, then the diagram is shown below.

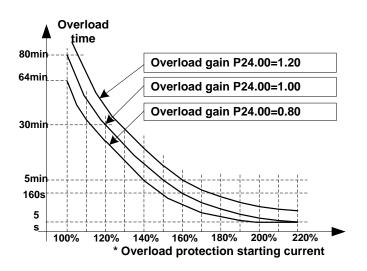
Dry run logic curve

Seen from the diagram shown above, if the output current is fall down to 40.0% of the max output current and the status last for P24.14 then the drive will set the alarm dry. If with P23.21 is not set, then the drive will coast stop while if P23.21 is set to value 3000, then the drive will keep on running with dry alarm.

41 Group Pump sleep and wake-up parameters:				
P41.00	Sleep/wake source selection	Unit'digit: Sleep source selection 0: No sleep function 2: Al1 sleep 3: Al2 sleep Ten's digit: Wake-up source selection 1: Al1 wake up 2: Al2 wake up Hundred's digit: Sleep wake-up direction selection 0: positive direction Sleep source (Al1 ~ Al2)>P41.03, inverter sleeps Wake-up source (Al1 ~ Al2) <p41.04, (al1="" 1:="" al2)="" al2)<p41.03,="" direction="" inverter="" reverse="" sleep="" sleeps="" source="" the="" up="" wake-up="" wakes="" ~="">P41.04, the inverter wakes up Note: If Al2 is connected to the liquid level detection signal, please set this value to "23". If there is no sleep source (the ones place is 0), the wake-up function is automatically invalid, and P41.03~P41.06 are invalid.</p41.04,>	010	*
P41.03	Dormant level	0~100.0% Note: The liquid level is higher than this value and the duration exceeds P41.05, and	0.0%	☆

		the pump sleeps.		
		0~100.0%		
D44.04		Note: The liquid level is lower than this value	0.00/	٨
P41.04	Wake up level	and the duration exceeds P41.06, the pump	0.0%	☆
		wakes up。		
P41.05	Enter sleep delay	0.0s∼6000.0s	0.0s	☆
P41.06	Wake-up delay	0.0s∼6000.0s	0.0s	☆
		Basic function parameter		
		0 ~ 65535		
		➤ No user password status (P00.01 = 1 after		
		power-on):		
		Entering the same non-zero value twice in		
		succession sets a user password and enters		
		lockout.		
P00.00	User password	> password lock state:	0	☆
		Enter the password to enter the unlock state.		
		> unlocked state:		
		Enter the original password to enter the lock		
		state; enter the same value twice in a row to		
		change the password (clear the password if you		
		enter 0 twice in a row).		
		0: NO ACTION		
	RESET	11: Restore default parameter except for motor		
P00.03		parameter and auto-tune related parameter and	0	*
P00.03		factory parameter	U	*
		12:Restore default to factory parameter		
		13: Clear tripping record		
		0: keypad		
	Source of the	1: terminal		
P00.06	Operation Command	2: communication	0	*
	oporation communa	➤ Command source: run、stop、forward、		
		reverse、jog、fast brake stop.etc		
P00.07	Numeric frequency	00.00Hz \sim maximum frequency	50.00Hz	☆
	setting	oc.comiz maximum nequency	00.001.12	
		0: Digital setting		
		1: Al1		
		2: Al2		
	Main frequency source	3: Al3(reserved)		
P01.00	selection (A)	4: Al4 (reserved)	10	*
	Colouisi (rij	5: HDI		
		6: multi-step speed		
		7: communication		
		8: PID		


		9: Internal PLC Notice:DI terminal function code 26-32 superior		
P01.06	Maximum fraguancy	than this function code 10.00∼600.00Hz	50.00Hz	
P01.06	Maximum frequency Upper limit frequency source	10.00~600.00HZ 0: Digital setting (P01.08) 1:Al1 2: Al2 3~4: reserved 5: HDI 6: reserved 7: Communication 8: PID	0 0	*
P01.08	Upper limit frequency	Lower limit frequency-maximum frequency	50.00Hz	$\stackrel{\wedge}{\Rightarrow}$
P01.09	Lower limit frequency	0.00hz-upper limit frequency	00.00Hz	☆
P02.08	Stop method	ramp to stop (Deceleration to stop) free coast to stop	0	☆
P02.15	Minimum blocking time after free stop	0.010s-30.000s	Depend on	*
P03.01	Acceleration time 1	Setting value depend on P03.16 P03.16 = 2, 0.00~600.00s; P03.16 = 1, 0.0s~6000.0s; P03.16 = 0, 0s~60000s	Depend on model	☆
P03.02	Deceleration time 1	Setting value depend on P03.16 P03.16 = 2, 0.00~600.00s; P03.16 = 1, 0.0s~6000.0s; P03.16 = 0, 0s~60000s	5.00\$	☆
P07.01	DO1 function	0:No function 1:READY 2:RUN 3:Error1 (stop fault) 4:Error2 (same as Error1 except undervoltage) 5:Warning output(fault but in running)	0	☆
P07.02	DO2 function	0:No function 1:READY 2:RUN 3:Error1 (stop fault) 4:Error2 (same as Error1 except undervoltage) 5:Warning output(fault but in running)	0	☆


		0:No function		
		1:READY		
	Relay 1 Output terminal	2:RUN		
P07.03	function group(T1A T1B	3:Error1 (stop fault)	3	☆
	T1C)	4:Error2 (same as Error1 except		
	,	undervoltage)		
		5:Warning output(fault but in running)		
		0:No function		
		1:READY		
		2:RUN		
	Relay 2 Output terminal	3:Error1 (stop fault)		
P07.04	function group(T2A T2B	4:Error2 (same as Error1 except	47	☆
	T2C) optional	undervoltage)		
		47:Warning output(fault but in running)		
		auto main & PV switching		
		0~200%		
		It is used to compensate the speed drop of the		
		asynchronous motor VF control with load, and		
		improve the speed control accuracy. Please		
P12.11	Slip compensation gain	adjust according to the following principles:	100%	☆
1 12.11	Onp compensation gain	Increase the setting when the motor speed	10070	^
		is lower than the target value with loading.		
		Reduce this setting when the motor speed		
		is higher than the target value with loading,		
		0: Standard mode (display frequency only)		
P21.00	Monitoring display	1: Automatic scrolling display (Check 3.1 in	0	*
		detail) it show hz,current,power and voltage	-	
		If you use shift button >> ,you will monitor running		
		frequency, set frequency, DC bus voltage and		
P21.11	Monitoring display >>	output current, if you change this value to 5341,lt	5341	☆
		will show running frequency, ac output voltage		
		and DC bus voltage and output current		
		Depend on drives power		
		≤7.5kW: 1kHz∼12.0kHz		
		11kW~45kW: 1kHz~8kHz		
		≥55kw: 1kHz∼4kHz		
		The carrier frequency can be reduced when it		
D00.00	Carrier/swithcing	came like following phenomenon:	D !	٨
P22.00	frequency	1 The leakage current generated by the inverter	Depend	☆
		is large		
		2 The interference generated by the inverter has		
		an impact on peripheral devices		
		3 Long wiring distance between inverter and		
		motor		

P22.14	Cooling method (fan control) Output phase loss function	The carrier frequency can be increased when it came like following phenomenon: 1 The electromagnetic noise generated by the motor is large 0:effective when running 1:Forced control(effective when power on) 2:adjustable as per drive temperature 0.0-30%, 0% means output phase detections shielded	2 30%	☆
P23.26	Fault auto Reset times	0~99	10	☆
P23.28	Fault reset internal time	0.1s-300.0s	10	
P23.29	Fault auto reset times clearing time	0.1s∼3600.0s	600.0s	☆
	•	11 Group Motor 1 Parameter		
P11.00	Motor type	AC asynchronous motor Synchronous motor(Special software) See appendix parameter	0	•
P11.01	AC asynchronous motor	Three phase AC asynchronous motor Single phase AC asynchronous motor without starting capacitor	0	*
P11.02	Motor rated power	0.1kW~800.0kW when power is less than 1kw ,0.75kw set to 0.8 as per round up principle ,0.55kw motor set 0.6 when change motor rated power,AC drive will automatically set other parameter of motor name plate and motor model parameter be careful to use	Depend	*
P11.03	Motor rated voltage	10V~2000V	Depend	*
P11.04	Motor rated current	P11.02<30kW: 0.01A P11.02>=30kW: 0.1A	Depend	*
P11.05	Motor rated frequency	1.00Hz~600.00Hz	50.00Hz	*
P11.06	Motor rated RPM	1~60000rpm	Depend	*
P11.10	Auto-tune/self-learning	O: no auto tuning 1: Stationary auto tuning of Asynchronous motor It is suitable in the cases when the motor can not de-couple form the load. The auto tuning for the motor parameter will impact the control accuracy.	0	*

		2: dynamic or Rotational auto tuning of Asynchronous motor		
		Comprehensive motor parameter auto tune It is recommended to use rotation auto tuning		
		when high control accuracy is needed.		
		24 Group motor protection		
P24.00	Motor overload protection gain	0.20~10.00 The larger the value, the longer the allowable overload operation, and the higher the risk of motor overheating damage.	1.00	☆
P24.01	Motor overload starting current at zero speed	50.0%~150.0%	100.0%	☆
P24.02	Motor overload starting current at Rated speed	50.0%~150.0%	115.0%	☆

Motor in self cooling mode, heat dissipation is poor when in low frequency but good in condition of high frequency . P24.01 adn P24.02 is used to set the starting point of zero and rated speed overload current in order to obtain a more reasonable under different speed overload protection Time curve

First graph: Motor overload protection starting current

Second graph: Motor Overload Protection Curve with Different Overload Protection Gains Motor overload only protects the motor from overload when P24.04 is enabled.P24.00 is used to adjust the overload inverse time curve time, as shown in the right figure above, the minimum motor overload time is 5.0s.

Note: Users need to correctly set the three parameters of P24.00, P24.01 and P24.02 according to the actual overload capacity of the motor. If set unreasonable, prone to motor overheating damage and the inverter is not timely warning of the danger of protection

and daniger o	protection 27	Group Monitoring parameter		
07.00		•		
r27.00	Output frequency	It can set unit as per Parameter P21.07	-	•
r27.01	Setting frequency	It can set unit as per Parameter P21.07	-	•
	Direction indicator	bit0: direction of running frequency		
r27.02		bit1: direction of setting frequencybit2: direction		
		of main frequency	-	•
		bit3: direction of auxiliary frequency		
		bit4: direction of Up Down offset		
		bit5: reserved		
r27.03	DC Bus voltage	Unit: 1V	-	•
r27.04	VF separation setting	unit: 0.1%	-	•
r27.05	Output AC voltage	unit: 0.1V		•
r27.06	Output AC current	unit: 0.1A	-	•
r27.07	Output current percentage	unit: 0.1%(100% of motor rated current)	-	•
r27.14	Accumulated power on time	Unit:hour	-	•
r27.15	Accumulated running time	Unit:hour	-	•
r27.18	Heat sink temperature	Unit:0.1 ℃	-	•
04.40	Load speed display	Load speed =P27.00*P21.10	-	•
r21.16		Decimal point digit defined by P21.11		
	Speed display unit	0: 0.01Hz; 1:1Rpm		
P21.17		> r10.12, r27.00, r27.01 displaying unit	0	*
		selection		
	25 (Group Fault tracking parameter		
r25.00	Current fault type	See detail chapter 5 fault diagnosis and solution	-	•
r25.01	Output frequency at fault	Unit:0.01Hz	-	•
r25.02	Output current at fault	Unit:0.1A		•
r25.03	Bus voltage at fault	Unit:V	-	•
r25.04	Running mode status 1st fault	See Parameter r27.10 in detail	-	•
r25.05	Input terminal status at	Bit0~Bit6 corresponds to DI1~DI7		
	fault	Bit12~Bit15 corresponds to VDI1~VDI4	-	•
r25.06	Working time at fault	Unit:0.01S	-	•
r25.07	Accumulated working time at fault	Unit:hour	-	•

r25.08	Frequency source at fault	Unit:0.01hz	-	•			
r25.14	Heat sink temperature at fault	Unit: 0.1° C	-	•			
r25.15	Low-level fault	-	-	•			
26 Group Fault recording parameter							
r26.00	Last fault 1trip type	SEE DETAILS IN CHAPTER 5	-	•			
r26.01	Output frequency at fault	Unit:0.01Hz	-	•			
r26.02	Output current at fault	Unit:0.1A	-	•			
r26.03	Bus voltage at fault	Unit:V	-	•			
r26.04	Running mode status 1at fault	See Parameter r27.10	-	•			
r26.05	Input terminal status at fault	Bit0~Bit6 corresponds to DI1~DI7 Bit12~Bit15 corresponds to VDI1~VDI4	-	•			
r26.06	Working time at fault	Unit:0.01S	-	•			
r26.07	Accumulated Working time at fault	Unit:hour	-	•			
r26.08	Last fault 2 trip type	Same as last fault description	-	•			
r26.09	Output frequency at fault	Unit:0.01Hz	-	•			
r26.10	Output current at fault	Unit:0.1A	-	•			
r26.11	Bus voltage at fault	Unit:V	-	•			
r26.12	Running mode status 1at fault		-	•			
r26.16	Last fault 3 trip type	Same as last fault description	-	•			
r26.17	Output frequency at fault	Unit:0.01Hz	-	•			
r26.18	Output current at faul	Unit:0.1A	-	•			
r26.19	Bus voltage at fault	Unit:V	-	•			
		P40 PID Group					
r40.00	PID final output value	Read only unit:0.1%	-	•			
r40.01	PID final set value	Read only:0.01%	-	•			
r40.02	PID final feedback value	Read only:0.01%	-	•			
r40.03	PID deviation value	Read only unit:0.01%	-	•			
		Unit's digit:PID main reference source(ref1)					
P40.04	PID reference source	 Digitial setting Al1 Al2 Al3(IO expansion board) Al4(IO expansion board) HDI high frequency pulse Communication 	00	☆			

		Ten's digit:PID Auxilary reference		
		source(ref2)Same as Unit's digit		
P40.05	PID given feedback range	0.01~655.35	100.00	☆
P40.06	PID digital setting 0	0.0~P40.05	0.00	☆
P40.11	PID feedback source1	Unit's digit 0: PID feedback source1(fdb1) 0:Al1 1:Al2 2:Al3(option card) 3:Al4(option card) 4: PLUSE(HDI) 5: Communication 6: Motor rated output current 7: Motor rated output frequency 8: Motor rated output torque 9: Motor rated output frequency Ten's digit : PID feedback source2 (fdb2) Same as Unit's digit	00	☆
P40.15	Upper limit of PID output	-100.0%~100.0%	100.0%	☆
P40.16	lower limit of PID output	-100.0%~100.0%	0.0%	☆
P40.17	Proportional gain KP1	0.00~200.0%	5.0%	☆
P40.18	Integral time TI1	0.01s~20.00s	1.00s	☆
P40.19	Differential time TD1	0.000s∼0.100s	0.000s	☆
		04 Group Analog input		
P04.07	Al 1 Curve setting	Unit's: Al curve selection 0: curve A 1: curve B 2: Curve C 3: Curve D Ten'unit: when input signal lower than minimum input 0: equal to minimum input 1: equal to 0.0%	00	*
P04.08	Al1 filter time	0.000s~10.000s	0.100s	☆
r04.09	Al 1 actual value	0.00V~10.00V (it is used to view the port voltage of Al1. When Al1 is a current type (0~20mA) input, multiplying this value by 2 is the input current (mA) of the Al1 port.)	-	•
r04.10	Al 1 Conversion value	-100.0%~100.0%(It is used to view the output of the Al1 mapped curve)	-	•

	Т		1	
		Unit's: Al curve selection 0: curve A		
		1: curve B		
P04.11	Al O Cumus a settina	2: Curve C 3: Curve D	01	
P04.11	Al 2 Curve setting		U I	*
		Ten'unit: when input signal lower than minimum		
		input		
		0: equal to minimum input		
D04.40	A IO filto u timo o	1: equal to 0.0%	0.400-	
P04.12	Al2 filter time	0.000s~10.000s	0.100s	☆
		0.00V~10.00V (it is used to view the port		
r04.13	Al 2 actual value	voltage of Al2. When Al2 is a current type	-	•
		(0~20mA) input, multiplying this value by 2 is		
		the input current (mA) of the Al2 port.)		
		-100.0%~100.0%(It is used to view the output		
		of the Al2 mapped curve)		
r04.14	Al 2 Conversion value		-	•
		0.00V~		
		0.00V~ P04.25		
P04.23	Curve A horizontal axis 1	Correspondia g setting	0.00V	☆
P04.23	Curve A nonzoniai axis i	P04.2	0.000	×
		- P04.2 4 P04.2 P04.25 Al		
		~		
P04.24	Curve A vertical axis 1	Note: Input less than P04.23,	0.0%	☆
		output decided by curve ten's		
		digit		
		P04.23 Setting method mode for Al1 4~20mA		
P04.25	Curve A horizontal axis 2	form	10.00V	☆
1 04.20	Carvo A Horizontal axis 2	1. Switch the corresponding AI1	10.00 v	~
		jumper on the IO board to current;		
		2. Set the function code: P04.07 Unit's		
P04.26	Curve A vertical axis 2	place=0 (default), P04.23=2.00.	100.0%	☆
		100.0%		
		100.070		

P04.27	Curve B horizontal axis 1	0.00V~ P04.29	Corresponding setting A P04.30 P04.28	0.00V	¥
P04.28	Curve B vertical axis 1	- 100.0% ~ 100.0%	P04.27 P04.29	0.0%	⋫
P04.29	Curve B horizontal axis 2	P04.27 ~ 10.00V	Note: Input less than P04.27, output decide by curve ten's digit	10.00V	☆
P04.30	Curve B vertical axis 2	- 100.0% ~ 100.0%	Setting method mode for Al1 4~20mA form 1. Switch the corresponding Al1 jumper on the IO board to current; 2. Set the function code: P04.11 one place=1 (default), P04.27=2.00	100.0%	☆
	06 Gro	up Digit	al input(Terminal function)		
P06.01	DI1 Numeric input function	3: Three	erminal rse/Forward and reverse switchover wire control ard jog command	1	*
P06.02	DI2 Numeric input function	 5: Reverse jog command 6: Terminal UP 7: Terminal DOWN 8: Clear up UP/DOWN offset 9: Coast to stop/free stop 		62	*
P06.03	DI3 Numeric input function	10: Faul 11: Reve 12: Swit	t reset erse forbidden ching run command to Keypad ching run command to Communication	60	*

P06.04 DI4 Numeric input function DI4 Numeric input function 15: external stop 16: Switch between motor 1 and motor 2 17: Pause operatoin 18: DC braking 19: Switch between torque and speed Control 20: torque control disabled 21: Multi-step speed terminal 1 22: Multi-step speed terminal 2 23: Multi-step speed terminal 3 24: Multi-step speed terminal 3 24: Multi-step speed terminal 4 25: frequency source switchover 26: Switch main frequency source to Numeric frequency setting 27: Switch main frequency source to Al1 28: Switch main frequency source to High-frequency pulse input 32: Switch main frequency source to communication setting 33: Switch auxiliary frequency source to numeric frequency setting 60:full water level detection 61:Low water level detection 62:forced switching to ac power					
P06.04 D14 Numeric input function 17: Pause operatoin 18: DC braking 19: Switch between torque and speed Control 20: torque control disabled 21: Multi-step speed terminal 1 22: Multi-step speed terminal 2 23: Multi-step speed terminal 3 24: Multi-step speed terminal 4 25: frequency source switchover 26: Switch main frequency source to Numeric frequency setting 27: Switch main frequency source to Al1 28: Switch main frequency source to Al2 31: Switch main frequency source to high-frequency pulse input 32: Switch main frequency source to communication setting 33: Switch auxiliary frequency source to numeric frequency setting 60:full water level detection 61:Low water level detection			15: external stop		
P06.04 D14 Numeric input function 18: DC braking 19: Switch between torque and speed Control 20: torque control disabled 21: Multi-step speed terminal 1 22: Multi-step speed terminal 3 24: Multi-step speed terminal 4 25: frequency source switchover 26: Switch main frequency source to Numeric frequency setting 27: Switch main frequency source to Al1 28: Switch main frequency source to Al2 31: Switch main frequency source to high-frequency pulse input 32: Switch main frequency source to communication setting 33: Switch auxiliary frequency source to numeric frequency setting 60:full water level detection 61:Low water level detection			16: Switch between motor 1 and motor 2		
P06.04 function 18: De Graking 19: Switch between torque and speed Control 20: torque control disabled 21: Multi-step speed terminal 1 22: Multi-step speed terminal 2 23: Multi-step speed terminal 3 24: Multi-step speed terminal 4 25: frequency source switchover 26: Switch main frequency source to Numeric frequency setting 27: Switch main frequency source to Al1 28: Switch main frequency source to Al2 31: Switch main frequency source to high-frequency pulse input 32: Switch main frequency source to communication setting 33: Switch auxiliary frequency source to numeric frequency setting 60:full water level detection 61:Low water level detection		5444	17: Pause operatoin		
P06.05 DI5(HDI) Numeric input function Switch main frequency source to Al1 28: Switch main frequency source to high-frequency pulse input frequency pulse input frequency pulse input frequency source to communication setting 33: Switch auxiliary frequency source to numeric frequency setting 60:full water level detection 61:Low water level detection	P06.04		18: DC braking	61	*
P06.05 DIS(HDI) Numeric input function DIS(HDI) Numeric input 32: Switch main frequency source to Al2 31: Switch main frequency source to high-frequency pulse input 32: Switch main frequency source to communication setting 33: Switch auxiliary frequency source to numeric frequency setting 60:full water level detection 61:Low water level detection		function	19: Switch between torque and speed Control		
P06.05 DI5(HDI) Numeric input function DI5(HDI) Numeric input 32: Switch main frequency source to Al2 31: Switch main frequency source to high-frequency pulse input 32: Switch main frequency source to communication setting 33: Switch auxiliary frequency source to numeric frequency setting 60:full water level detection 61:Low water level detection			20: torque control disabled		
P06.05 DI5(HDI) Numeric input function Switch main frequency source to AI1 28: Switch main frequency source to high-frequency pulse input frequency pulse input frequency source to communication setting 33: Switch auxiliary frequency source to numeric frequency setting 60:full water level detection 61:Low water level detection			21: Multi-step speed terminal 1		
P06.05 DI5(HDI) Numeric input function DI5(HDI) Numeric input 32: Switch main frequency source to Al2 31: Switch main frequency source to high-frequency pulse input 32: Switch main frequency source to communication setting 33: Switch auxiliary frequency source to numeric frequency setting 60:full water level detection 61:Low water level detection			22: Multi-step speed terminal 2		
P06.05 DI5(HDI) Numeric input function DI5(HDI) Numeric input also switch main frequency source to Al2 31: Switch main frequency source to high-frequency pulse input also switch main frequency source to communication setting 32: Switch main frequency source to communication setting 33: Switch auxiliary frequency source to numeric frequency setting 60:full water level detection 61:Low water level detection			23: Multi-step speed terminal 3		
P06.05 DI5(HDI) Numeric input function DI5(HDI) Numeric input function DI5(HDI) Numeric input function DI5(HDI) Numeric input function DI5(HDI) Numeric input 31: Switch main frequency source to Al2 31: Switch main frequency source to high-frequency pulse input 32: Switch main frequency source to communication setting 33: Switch auxiliary frequency source to numeric frequency setting 60:full water level detection 61:Low water level detection			24: Multi-step speed terminal 4		
P06.05 DI5(HDI) Numeric input function The frequency setting 27: Switch main frequency source to AI1 28: Switch main frequency source to high-frequency pulse input 32: Switch main frequency source to communication setting 33: Switch auxiliary frequency source to numeric frequency setting 60:full water level detection 61:Low water level detection			25: frequency source switchover		
P06.05 DI5(HDI) Numeric input function DI5(HDI) Numeric input function 27: Switch main frequency source to Al2 31: Switch main frequency source to high-frequency pulse input 32: Switch main frequency source to communication setting 33: Switch auxiliary frequency source to numeric frequency setting 60:full water level detection 61:Low water level detection			26: Switch main frequency source to Numeric		
P06.05 DI5(HDI) Numeric input function 28: Switch main frequency source to AI2 31: Switch main frequency source to high-frequency pulse input 32: Switch main frequency source to communication setting 33: Switch auxiliary frequency source to numeric frequency setting 60:full water level detection 61:Low water level detection			frequency setting		
P06.05 DI5(HDI) Numeric input function 31: Switch main frequency source to high-frequency pulse input 32: Switch main frequency source to communication setting 33: Switch auxiliary frequency source to numeric frequency setting 60:full water level detection 61:Low water level detection			27: Switch main frequency source to Al1		
function 31: Switch main frequency source to high- frequency pulse input 32: Switch main frequency source to communication setting 33: Switch auxiliary frequency source to numeric frequency setting 60:full water level detection 61:Low water level detection			28: Switch main frequency source to Al2		
32: Switch main frequency source to communication setting 33: Switch auxiliary frequency source to numeric frequency setting 60:full water level detection 61:Low water level detection	P06.05	. , ,	31: Switch main frequency source to high-	0	*
communication setting 33: Switch auxiliary frequency source to numeric frequency setting 60:full water level detection 61:Low water level detection		function	frequency pulse input		
33: Switch auxiliary frequency source to numeric frequency setting 60:full water level detection 61:Low water level detection			32: Switch main frequency source to		
numeric frequency setting 60:full water level detection 61:Low water level detection			communication setting		
60:full water level detection 61:Low water level detection			33: Switch auxiliary frequency source to		
61:Low water level detection			numeric frequency setting		
			60:full water level detection		
62:forced switching to ac power			61:Low water level detection		
			62:forced switching to ac power		

Chapter 5 Fault Diagnosis and Solution

VFD500-PV inverter has 24 types of warning information and protection function. In case of abnormal fault, the protection function will be invoked, the inverter will stop output, and the faulty relay contact of the inverter will start, and the fault code will be displayed on the display panel of the inverter. Before consulting the service department, the user can perform self-check according to the prompts of this chapter, analyze the fault cause and find out solution. If the fault is caused by the reasons as described in the dotted frame, please consult the agents of inverter or factory directly.

Fault Name	Fault code	Display	Possible Causes	Solutions
Inverter unit protection	1	Er. SC Er. SC	1: Motor insulation aging 2: The cable is damaged and contact, short circuit 3:The distance between motor and inverter are too long. 4: Output transistor breakdown 5: The internal wiring of the inverter is loose, or the hardware is bad. 6:Brake transistor short circuit	1. Confirm the insulation resistance of the motor. If it is turned on, replace the motor. 2. Check the power cable of the motor 3. Install reactor or output filter 4, seeking technical support 5, seeking technical support 6. Check if the braking resistor is damaged and the wiring is correct.
Over current during acceleration	2	Er.OC1 Er.oC I	1: The output circuit is grounded or short circuited. 2: Motor auto-tuning is not performed. 3: The acceleration time is too short. 4: Manual torque boost or V/F curve is not appropriate. 5: The voltage is too low. 6: The startup operation is performed on the rotating motor. 7: A sudden load is added during acceleration. 8: The frequency inverter model is of too small power class.	1: Eliminate external faults. 2: Perform the motor auto- Tuning in cold state 3: Increase the acceleration time. 4: Adjust the manual torque boost or V/F curve. 5: Adjust the voltage to normal range. 6: Select rotational speed tracking restart or start the motor after it stops. 7: Remove the added load. 8: Select a frequency inverter Of higher power class.

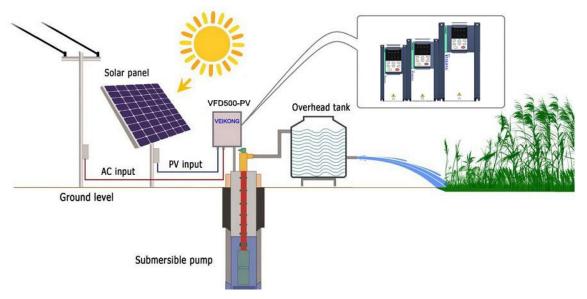
Fault Name	Fault code	Display	Possible Causes	Solutions
Over current during deceleration	3	Er.OC2 Er.oC2	1: The output circuit is grounded or short circuited. 2: Motor auto-tuning is not performed. 3: The deceleration time is too short. 4: The voltage is too low. 5: A sudden load is added during deceleration. 6: The braking unit and braking resistor are not installed	1: Eliminate external faults. 2: Perform the motor auto-tuning. 3: Increase the deceleration time. 4: Adjust the voltage to normal range. 5: Remove the added load. 6: Install the braking unit And braking resistor.
Over current at constant speed	4	Er.OC3 Er.oC3	1: The output circuit is grounded or short circuited. 2: Motor auto-tuning is notperformed. 3: The voltage is too low. 4: A sudden load is added during operation. 5: The frequency inverter model is of too small power class.	1:Eliminate external faults. 2: Perform the motor autotuning. 3:Adjust The voltage to normal range. 4: Remove the addedload. 5: Select a frequency Inverter of higher power class.
Overvoltage during acceleration	5	Er.OU1 Er.oU I	1:The input voltage is too high 2:The surge voltage is mixed in the input power supply. 3: There is an external force to drive the motor to run, or the brake type load is too heavy 4:The acceleration time is too short 5:The motor is shorted to ground	1:The power supply voltage is reduced to the normal range 2:Install DC reactor 3:Cancel the external force of the draggable motor or install the brake unit 4: Increase the acceleration time
Overvoltage during deceleration	6	Er.OU2 Er.oUC	1:The input voltage is too high 2:The surge voltage is mixed in the input power supply. 3: there is an external force to drive the motor to run, or the brake type load is too heavy 4:the decceleration time is too short 5:the motor is shorted to ground	1:the power supply voltage is reduced to the normal range 2:install DC reactor 3:Cancel the external force of the draggable motor or install the brake unit 4: increase the decceleration time 5:eliminate the part of the ground
Overvoltage at constant speed	7	Er.OU3 Er.oU3	1:The input voltage is too high 2:The surge voltage is mixed in the input power supply. 3: There is an external force to drive the motor to run, or the brake type load is too heavy 4:The acceleration or decceleration time is too short 5:The motor is shorted to ground	1:the power supply voltage is reduced to the normal range 2:install DC reactor 3:Cancel the external force of the draggable motor or install the brake unit 4: increase the acceleration or decceleration time 5:eliminate the part of the ground

Fault Name	Fault code	Display	Possible Causes	Solutions
Low voltage	8	Er.Lv1 Er.Lu I	1: Instantaneous power failure occurs on the input power supply or input phase loss 2: The frequency inverter's input voltage is not within the allowable range. 3: Cut off the power during operation 4:the internal wiring of the inverter is loose, or the hardware is bad.	1:Check if the input power supply is abnormal, whether the input power terminal is loose, whether the input contactor or the air switch is abnormal. 2:adjust the voltage to the normal range 3:Power off after the inverter stops 4:seeking technical support 5: For the unstable power supply, if the performance requirements are low, try to enable the undervoltage stall function (P23.00).
Contactor open	9	Er.Lv2 Er.Lud	1: Instantaneous power failure occurs on the input power supply 2: The frequency inverter's input voltage is not within the allowable range. 3: Cut off the power during operation 4:the internal wiring of the inverter is loose, or the hardware is bad.	1:Check if the input power supply is abnormal, whether the input power terminal is loose, whether the input contactor or the air switch is abnormal. 2:adjust the voltage to the normal range 3:Power off after the inverter stops 4:seeking technical support 5: For the unstable power supply, if the performance requirements are low, try to enable the undervoltage stall function (P23.00).
Frequency inverter overload	10	Er. Ol Er. oL	1:The load is too large or the motor is blocked. 2:The large inertia load acceleration and deceleration time is too short 3: When the VF is controlled, the torque boost or V/F curve is not suitable. 4:The frequency converter selection is too small 5:Overload at low speed operation	1. Reduce the load and check the motor and mechanical conditions. 2, increase the acceleration and deceleration time 3. Adjust the torque boost or V/F curve 4, select the inverter with a larger power level 5. Perform motor self-learning in cold state and reduce carrier frequency at low speed

Fault Name	Fault code	Display	Possible Causes	Solutions
Motor overload	11	Er.oL1 Er.oL I	1:The load is too large or the motor is blocked. 2:The large inertia load acceleration and deceleration time is too short 3:When the VF is controlled, the torque boost or V/F curve is not suitable. 4:The motor selection is too small 5:overload at low speed operation 6:Improper setting of motor parameters and motor protection parameters	1. Reduce the load and check the motor and mechanical conditions. Correctly set the motor parameters and motor protection parameters. 2, increase the acceleration and deceleration time 3. Adjust the torque boost or V/F curve 4, select a motor with a higher power level 5. Perform motor self-learning in cold state and reduce carrier frequency at low speed 6, check the settings of related parameters
Power input phase loss	12	Er.iLP Er.i LP	 The three-phase power input is abnormal. The drive board is faulty. Thelightning proof board is faulty. The main control board is faulty. 	1:Eliminate external faults. 2: Ask for technical support. 3: Ask for technical support. 4: Ask for technical support.
Power output phase loss	13	Er.oLP Er.oLP	1: The cable connecting the frequency inverter and the motor is faulty. 2: The frequency inverter's three-phase outputs are unbalanced when the motor is running. 3: The drive board is faulty. 4: The IGBT module is faulty.	1:Eliminate external faults. 2: Check whether the Motor three phase winding is normal. 3: Ask for technical support. 4: Ask for technical support.

Fault Name	Fault code	Display	Possible Causes	Solutions
IGBT Module overheat	14	Er. oH Er. oH	1: The ambient temperature is too high. 2: The air filter is blocked. 3: The fan is damaged. 4: The thermally sensitive resistor of the IGBT module is damaged. 5: The inverter IGBT module is damaged	1:Lower the ambient temperature. 2: Clean the air filter. 3: Replace thedamaged fan. 4:Replace the damaged thermally sensitive resistor. 5: Replace the inverter module.
Motor overheat	16	Er. oH3 Er.oH3	1:The temperature sensor wiring is loose 2:The motor temperature is too high 3:Themotor temperature sensor detects that the temperature is greater than the set threshold.	1:check the temperature sensor wiring 2:Improve the carrier frequency, strengthen the heat dissipation of the motor, reduce the load, and select a motor with higher power. 3:Check if the set threshold is reasonable.
By wave current limitingfault	17	Er.CbC Er.LbL	1: The load is too heavy or locked- rotor occurs on the motor. 2: The frequency inverter model is of too small power class	1: Reduce the load and check the motor and mechanical condition. 2: Select a frequency inverter of higher power class.
Ground short circuit	18	Er.GF Er. UF	1. Motor burnout or insulation aging 2, The cable is damaged and contact, short circuit 3. The distributed capacitance of the terminal and motor cable is larger motor cable 4, Hardware is damaged	 Confirm the insulation resistance of the motor. If it is turned on, replace the motor. Check the power cable of the motor to eliminate the fault point. reduce the carrier frequency, install the output reactor seeking technical support
module temperature detection fault	20	Er.tCK Er.ECE	1, Temperature detection line broken 2, Drive board is faulty 3. Main control board is faulty 4, The environmental temperature is too low	 Check the thermistor wiring Ask for technical support Ask for technical support manual intervention to drive the temperature rise

Fault Name	Fault code	Display	Possible Causes	Solutions
Current detection fault	21	Er.Cur Er.LUr	 The HALL device is faulty. The drive board is faulty. The control board is faulty 	1: Replace the faulty HALL device. 2: Replace the faulty drive board. 3: Ask for technical support.
Encoder offline	22	Er.PGL Er.PüL	2. Encoder pulse setting wrong	check motor and mechanical condition set correct parameter for encoder check encoder connecting line
Motor over-speed	25	Er. oS Er. oS	1: The encoder parameters are setincorrectly. 2: The motor auto-tuning is notperformed. 3: The over-speed detectionparameters are set incorrectly	1: Set the encoder parametersproperly. 2: Perform the motor autotuning. 3: Set the over-speed detection parameter correctly based on the actual situation.
Too large speed deviation	26	Er.DEV Er.dEu	1: The encoder parameters are setincorrectly. 2: The motor auto-tuning is notperformed. 3: The detection parameters of toolarge speed deviation are setincorrectly.	1: Set the encoder parameters properly. 2: Perform the motor autotuning. 3: Set the detection parameters correctly based on the actualsituation.
Motor auto-tuning fault 1	27	Er.tU1 Er.bU I	1: The motor parameters are not set according to the nameplate. 2: The motor auto-tuning times out.	1: Set the motor parameters according to the nameplateproperly. 2: Check the cable connecting between the Frequency inverter and themotor.
Motor auto-tuning fault 3	28	Er.tU3 Er.bU3	1: The motor parameters are not set according to the nameplate. 2: The motor auto-tuning times out.	1: Set the motor parametersaccording to the nameplateproperly. 2: Check the cable connecting between the Frequency
Off load	31	Er. LL Er. LL	1. The frequency inverter running currentis lower than the setting value.	1. Confirm whether the load is off 2. Check that the load is disconnected or the parameter setting is correct
EEPROM read- write fault	32	Er.EEP Er.EEP	 Eeprom Operate too frequent The EEPROM chip is damaged. 	Operate Eeprom suitable Replace the main control board


Fault Name	Fault code	Display	Possible Causes	Solutions
Running time arrival	33	Er.TTA Er.ŁŁA	Inverter trial time arrival	1:Contact agent or distributor
485Communicatio n fault	34	Er.485 Er.485	1, The work of the host computer is not normal 2, The communication line is not normal 3, The communication parameter set is incorrect	Check the connection of upper computer Check the communication connection line Set communication parameters correctly
PID feedback lost during running	36	Er.FbL	PID feedback <p40.35 setting="" value<br="">and P40.36 not zero,PID feedback>P40.37 setting value and P40.38 not zero</p40.35>	Check PID feedback signal P40.35 and P40.37 set correct parameter
User-defined fault 1	37	Er.Ud1 Er.Ud I	1: The signal of user-defined fault 1 is input via DI. 2:The signal of user-defined fault 1 is input via virtual I/O.	1: Reset the operation. 2: Reset the operation
User-defined fault 2	38	Er.Ud2 Er.Ud2	1: The signal of user-defined fault 2 is input via DI. 2:The signal of user-defined fault 2 is input via virtual I/O.	1: Reset the operation. 2: Reset the operation
Light weak warning	39	SLEEF	If output frequency is lower than light detection threshold and Solar radiation is too weak	Check P47.05 and 47.07
Full water protection	40	A.FU R.F.UL	Detect the water full alarm and low water level through DI terminals, realizing automatic level control	Check P47.18 to 47.21
Lower power protection	41	A.PLo <mark>R.P.o.L</mark>	During the operation of the photovoltaic pump, for some reason, the output power is less than P47.22(minimum power protection value)	Check P47.22 to 47.24
Over current protection	42	A.oC A.oC	During operation, when the actual output current (r27.06) is less than P47.25 and the P47.26 time is maintained, the system reports A.oC and stops.	Check P47.25 to 47.27

Chapter 6 Service Agreement

- 1. Guarantee Free-service period is 18 Month valid since delivery date from factory which was subjected to the serial number on the drive rating label.
- 2. Service free for Failure or trouble caused by our product quality issue.
- 3. For the service that Exceeding Guarantee time or failure not caused by drive quality issues is out of the free range:
 - From inappropriate, negligent or incorrect installation or adjustment of the optional operating parameters of the equipment or from mismatching the drive with the motor;
 - Not permitted by the factory supplier, modified the drive devices;
 - Out of the VFD500-PV product specification application;
 - Failure consequences by fire, flooding, earthquake etc., un-foresee natural disasters;
 - Without drive's serial number or the S.N. can not be identified clearly.
- 4. Technical support hotline:+86- 075589587650

Solar pump inverter maintenance warranty card

	User corporation:	
	Address:	
	Post code:	Contractor:
	Tel. no.:	Fax no.:
	Solar pump inverter type:	
Product information	Power size(kW):	S.N.:
	Contract no.:	Purchase date:
	Service engineer:	Tel. no.:
Repair record	Fixed date:	
	Fault information:	
Complaints and demanding on our products:		
User signature: year month date		
Return visit record:		
		Service signature: year month date
1		5 ,

VEIKONG

ShenZhen VEIKONG Electric CO., Ltd.

Factory Address:

Block E01,first industrical park lingbei 5 road ,phoenix comm unity,fuyong street , Bao'anDistrict, Shenzhen ,China

Technical Support Hotline: +86-0755-89587650

Web Site: www.veikong-electric.com

008615989436541